Sparse Preconditioned Iterative Methods for Dense Linear Systems
نویسنده
چکیده
Two sparse preconditioned iterative methods are presented to solve dense linear systems arising in the solution of two dimensional boundary integral equations. In the rst method, the sparse preconditioner is constructedsimply by choosing a small block of elements in the coeecient matrix of a dense linear system. The two-grid method falls into this category when the dense linear system arises from the Nystr om method for a second kind boundary integral equation. In the second method, the sparse preconditioner is obtained through condensation of the coeecient matrix by discrete Fourier transforms, which can be implemented eeciently using fast Fourier transforms. Both iterative methods involve only O(N 2) arithmetic operations per iteration, and converge rapidly when the dense linear systems arise from quadrature methods for boundary integral equations arising in two dimensional problems. Our numerical experiments demonstrate the computational eeciency of each method.
منابع مشابه
Comparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems
Consider the linear system Ax=b where the coefficient matrix A is an M-matrix. In the present work, it is proved that the rate of convergence of the Gauss-Seidel method is faster than the mixed-type splitting and AOR (SOR) iterative methods for solving M-matrix linear systems. Furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a preconditio...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملOn the modified iterative methods for $M$-matrix linear systems
This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...
متن کاملParallel Preconditioned Conjugate-Gradients Methods on Transputer Networks
We show how highly efficient parallel implementations of basic linear algebra routines may be used as building blocks to implement efficient higher level algorithms. We discuss the solution of systems of linear equations using a preconditioned Conjugate-Gradients iterative method on a network of transputers. Results are presented for the solution of both dense and sparse systems; the latter bei...
متن کاملImprovements of two preconditioned AOR iterative methods for Z-matrices
In this paper, we propose two preconditioned AOR iterative methods to solve systems of linear equations whose coefficient matrices are Z-matrix. These methods can be considered as improvements of two previously presented ones in the literature. Finally some numerical experiments are given to show the effectiveness of the proposed preconditioners.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 15 شماره
صفحات -
تاریخ انتشار 1994